Поиск :
Личный кабинет :
Электронный каталог: Бибиков, Ю. Н. - Курс обыкновенных дифференциальных уравнений
Бибиков, Ю. Н. - Курс обыкновенных дифференциальных уравнений

Нет экз.
Электронный ресурс
Автор: Бибиков, Ю. Н.
Курс обыкновенных дифференциальных уравнений : учебное пособие для вузов
Издательство: Лань, 2026 г.
ISBN 978-5-507-51188-4
Автор: Бибиков, Ю. Н.
Курс обыкновенных дифференциальных уравнений : учебное пособие для вузов
Издательство: Лань, 2026 г.
ISBN 978-5-507-51188-4
Электронный ресурс
Бибиков, Ю. Н.
Курс обыкновенных дифференциальных уравнений [Электронный ресурс] : учебное пособие для вузов. – 3-е изд., стер. – Санкт-Петербург : Лань, 2026. – 304 с. – Режим доступа : https://e.lanbook.com/book/507440, https://e.lanbook.com/img/cover/book/507440.jpg. – Книга из коллекции Лань - Математика. – На рус. яз. – ISBN 978-5-507-51188-4.
Пособие содержит все традиционные разделы курса обыкновенных дифференциальных уравнений. Большое внимание уделено вопросам существования, единственности и продолжаемости решений, зависимости их от начальных данных и параметров. В теории линейных уравнений и систем дополнительно рассматриваются системы с периодическими коэффициентами, функция Грина краевой задачи. Излагаются разделы по теории дифференциальных уравнений с аналитическими правыми частями и по теории устойчивости движения. Учебное пособие предназначено для студентов математических, физических и технических специальностей.
517.9(07)
основной = ЭБС Лань
Бибиков, Ю. Н.
Курс обыкновенных дифференциальных уравнений [Электронный ресурс] : учебное пособие для вузов. – 3-е изд., стер. – Санкт-Петербург : Лань, 2026. – 304 с. – Режим доступа : https://e.lanbook.com/book/507440, https://e.lanbook.com/img/cover/book/507440.jpg. – Книга из коллекции Лань - Математика. – На рус. яз. – ISBN 978-5-507-51188-4.
Пособие содержит все традиционные разделы курса обыкновенных дифференциальных уравнений. Большое внимание уделено вопросам существования, единственности и продолжаемости решений, зависимости их от начальных данных и параметров. В теории линейных уравнений и систем дополнительно рассматриваются системы с периодическими коэффициентами, функция Грина краевой задачи. Излагаются разделы по теории дифференциальных уравнений с аналитическими правыми частями и по теории устойчивости движения. Учебное пособие предназначено для студентов математических, физических и технических специальностей.
517.9(07)
основной = ЭБС Лань
На полку