Электронный каталог

👓
eng|rus
Библиотека Московского Педагогического
Государственного Университета

Адрес: ул. М. Пироговская, д. 1, стр.1
Телефон: 8(499)255-27-57
Часы работы: с 10.00 до 18.00

Поиск :

  • Новые поступления
  • Простой поиск
  • Расширенный поиск

  • Авторы
  • Издательства
  • Серии
  • Тезаурус (Рубрики)

  • Учебная литература:
    • По дисциплинам
    • По образовательным программам
    • Список дисциплин

  • Статистика поисков
  • Электронная библиотека
  • База выпускных квалификационных работ
  • Электронные ресурсы
  • Помощь

Личный кабинет :


Электронный каталог: Делоне, Б. Н. - Теория иррациональностей третьей степени

Делоне, Б. Н. - Теория иррациональностей третьей степени

Нет экз.
Электронный ресурс
Автор: Делоне, Б. Н.
Теория иррациональностей третьей степени
Издательство: Издательство Академии наук СССР, 1940 г.
ISBN отсутствует

полный текст

На полку На полку


Электронный ресурс

Делоне, Б. Н.
Теория иррациональностей третьей степени / отв. ред. И. М. Виноградов ; н. С. Академия. – Москва|Ленинград : Издательство Академии наук СССР, 1940. – 339 с. – Режим доступа : http://biblioclub.ru/index.php?page=book&id=454837. – http://biblioclub.ru/. – На рус. яз. – ISSN .

"Большая часть современной теории алгебраических чисел рассматривает вопросы, простейший, но уже не тривиальный, пример которых мы находим в теории квадратичных иррациональностей. Сюда относятся: теория единиц, теория идеалов, законы взаимности, а следовательно, отчасти, и теория поля классов. Подробное изучение теории алгебраических иррациональностей третьей степени интересно не только потому, что оно дает следующий по сложности за квадратичным случаем пример на все эти задачи, для решения которых и в этом случае еще можно дать вполне удобные алгоритмы, а главным образом потому, что оно ставит некоторые дальнейшие вопросы, которые в квадратичном случае еще столь тривиальны, что при изучении его не стали перед исследователем. Сюда относятся, в первую очередь, вопросы классификации кубических иррациональностей, так называемая обратная задача теории Галуа для этих иррациональностей, и вопрос о приближении рациональными числами к иррациональностям высших степеней, в полной мере не решенный до сих пор и тесно связанный с вопросом о представлении чисел неполными (т. е. такими, у которых число переменных меньше их степени) разложимыми формами. Эти оба капитальных вопроса впервые в нетривиальной форме появляются в теории кубических иррациональностей, но дальше имеют место для иррациональностей любой степени."


основной = ЭБС Университетская библиотека




© Все права защищены ООО "Компания Либэр" , 2009 - 2026  v.20.203